HDAC1 regulates inflammation and osteogenic differentiation of ankylosing spondylitis fibroblasts through the Wnt-Smad signaling pathway

Author:

Zeng Yong,He Rui,Liu Yong,Luo Ting,Li Qing,He Yu,Fang Miao,Wang Taiping

Abstract

AbstractAnkylosing spondylitis (AS) is a refractory autoimmune disease, whose typical pathology is the development of inflammation to ossification and ankylosis. Histone deacetylase 1 (HDAC1) is considered to be a key factor involved in inflammatory gene transduction, but its role in AS remains unclear. The purpose of this study was to explore the role and possible mechanism of HDAC1 in AS based on the Wnt-Smad pathway. Fibroblasts were isolated from hip synovial tissues of AS patients, adeno-associated virus (AAV) was used to regulate the expression of HDAC1, DKK-1 and SIS3 was used to inhibit Wnt and Smad, respectively. The expressions of Wnt-Smad pathway-related proteins were analyzed by WB, and the TRP ion channel proteins were analyzed by immunofluorescence and WB. The proliferation of AS fibroblasts was detected by CCK-8, the expression of inflammatory cytokines was detected by ELISA, and the effects of HDAC1 on osteogenic differentiation of AS fibroblasts were investigated by alkaline phosphatase (ALP) activity, intracellular calcium concentration, mineralization and osteogenic proteins expressions. Results showed that HDAC1 significantly affected the protein expressions of the Wnt-Smad pathway in AS fibroblasts, and Wnt inhibitor DKK-1 and Smad3 inhibitor SIS3 could significantly reverse the effect of HDAC1 on the Wnt-Smad pathway. In addition, HDAC1 significantly activated the TRP ion channel and promoted the proliferation, inflammatory response and osteogenic differentiation of AS fibroblasts. DKK-1 or SIS3 treatment significantly inhibit the effect of HDAC-1 on AS fibroblasts, suggesting that the Wnt-Smad pathway is involved in the regulation of AS by HDAC1. In conclusion, HDAC1 promotes the proliferation, inflammatory response and osteogenic differentiation of AS fibroblasts through the Wnt-Smad pathway.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3