Abstract
Abstract
Background
Screws are the most frequently inserted orthopaedic implants. Biomechanical, laboratory-based studies are used to provide a controlled environment to investigate revolutionary and evolutionary improvements in orthopaedic techniques. Predominantly, biomechanical trained, non-surgically practicing researchers perform these studies, whilst it will be orthopaedic surgeons who will put these procedures into practice on patients. Limited data exist on the comparative performance of surgically and non-surgically trained biomechanical researchers when inserting screws. Furthermore, any variation in performance by surgeons and/or biomechanical researchers may create an underappreciated confounder to biomechanical research findings. This study aimed to identify the differences between surgically and non-surgically trained biomechanical researchers’ achieved screw tightness and stripping rates with different fixation methods.
Methods
Ten orthopaedic surgeons and 10 researchers inserted 60 cortical screws each into artificial bone, for three different screw diameters (2.7, 3.5 and 4.5 mm), with 50% of screws inserted through plates and 50% through washers. Screw tightness, screw hole stripping rates and confidence in screw purchase were recorded. Three members of each group also inserted 30 screws using an augmented screwdriver, which indicated when optimum tightness was achieved.
Results
Unstripped screw tightness for orthopaedic surgeons and researchers was 82% (n = 928, 95% CI 81–83) and 76% (n = 1470, 95% CI 75–76) respectively (p < 0.001); surgeons stripped 48% (872/1800) of inserted screws and researchers 18% (330/1800). Using washers was associated with increased tightness [80% (95% CI 80–81), n = 1196] compared to screws inserted through plates [76% (95% CI 75–77), n = 1204] (p < 0.001). Researchers were more accurate in their overall assessment of good screw insertion (86% vs. 62%). No learning effect occurred when comparing screw tightness for the first 10 insertions against the last 10 insertions for any condition (p = 0.058–0.821). Augmented screwdrivers, indicating optimum tightness, reduced stripping rates from 34 to 21% (p < 0.001). Experience was not associated with improved performance in screw tightness or stripping rates for either group (p = 0.385–0.965).
Conclusions
Surgeons and researchers showed different screw tightness under the same in vitro conditions, with greater rates of screw hole stripping by surgeons. This may have important implications for the reproducibility and transferability of research findings from different settings depending on who undertakes the experiments.
Funder
ao foundation
royal college of surgeons of england
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Surgery
Reference21 articles.
1. Fletcher JWA, Wenzel L, Neumann V, Richards RG, Gueorguiev B, Gill HS, et al. Surgical performance when inserting non-locking screws: a systematic review. EFORT Open Rev. 2020;5(1):711–21.
2. Joint Committee on Surgical Training. Updated guidance to the 2017/18 Certification Guidelines. 2018. Retrieved from https://www.jcst.org/quality-assurance/certification-guidelines-and-checklists/.
3. Fletcher JWA, Neumann V, Wenzel L, Gueorguiev B, Richards RG, Gill HS, et al. Variations in non-locking screw insertion conditions generate unpredictable changes to achieved fixation tightness and stripping rates. Clin Biomech (Bristol, Avon). 2020;80:105201.
4. Aziz M Sr, Tsuji MR, Nicayenzi B, Crookshank MC, Bougherara H, Schemitsch EH, et al. Biomechanical measurements of stopping and stripping torques during screw insertion in five types of human and artificial humeri. Proc Inst Mech Eng H. 2014;228(5):446–55.
5. Tsuji M, Crookshank M, Olsen M, Schemitsch EH, Zdero R. The biomechanical effect of artificial and human bone density on stopping and stripping torque during screw insertion. J Mech Behav Biomed Mater. 2013;22:146–56.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献