Network pharmacology identifies fisetin as a treatment for osteoporosis that activates the Wnt/β-catenin signaling pathway in BMSCs

Author:

Liang GuihongORCID,Zhao JinlongORCID,Pan JiankeORCID,Yang Yuan,Dou Yaoxing,Yang WeiyiORCID,Zeng LingfengORCID,Liu JunORCID

Abstract

Abstract Background Although fisetin may exist widely in many natural herbs, its anti-OP mechanism is still unclear. The aim of this study is to explore the molecular anti-osteoporosis (OP) mechanism of fisetin based on network pharmacology and cell experiments. Methods The target of fisetin was extracted by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The targets of OP were obtained by DisGeNET, GeneCards and the Comparative Toxicogenomics Database, and the targets of fisetin in OP were screened by cross-analysis. The protein–protein interaction (PPI) network was constructed by STRING, and the core targets were obtained. We performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses on common targets via the Database for Annotation, Visualization and Integrated Discovery. Finally, an in vitro cell experiment was used to verify the anti-OP effect and mechanism of fisetin. Results There are 44 targets of fisetin related to the treatment of OP. The PPI results suggest that CTNNB1, CCND1, TP53, JUN, and AKT1 are the core targets. A total of 259 biological process, 57 molecular function and 26 cell component terms were obtained from GO enrichment analysis. The results of KEGG pathway enrichment analysis suggested that fisetin treatment of OP may be related to the Wnt signaling pathway, estrogen signaling pathway, PI3K-Akt signaling pathway and other signaling pathways. In vitro cell experiments showed that fisetin significantly increased the expression levels of ALP, collagen I, osteopontin and RUNX2 in bone marrow mesenchymal stem cells (BMSCs) (p < 0.05). Fisetin also increased the gene expression levels of Wnt3 and β-catenin (CTNNB1) in BMSCs, which indicates that fisetin can regulate the Wnt/β-catenin signaling pathway and promote the osteogenic differentiation of BMSCs. Conclusions Fisetin acts on multiple targets and pathways in the treatment of OP; mechanistically, it regulates the Wnt/β-catenin signaling pathway, which promotes the osteogenic differentiation of BMSCs and maintains bone homeostasis. The results of this study provide a theoretical basis for further study on the complex anti-OP mechanism of fisetin.

Funder

the National Natural Science Foundation of China

the National key research and development program

Guangdong Basic and Applied Basic Research Foundation

Science and Technology Program of Guangzhou

Research Fund for Bajian Talents of Guangdong Provincial Hospital of Chinese Medicine

Project of Philosophy and Social Science Planning of Guangzhou

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3