Hindfoot motion according to subtalar compensation and ankle osteoarthritis stage analyzed by a multi-segment foot model

Author:

Kang Ho Won,Kim Dae-Yoo,Kim Jung Min,Park Gil Young,Lee Dong-Oh,Lee Dong Yeon

Abstract

Abstract Background The biomechanics of the hindfoot in ankle osteoarthritis (OA) are not yet fully understood. Here, we aimed to identify hindfoot motion in a gait analysis using a multi-segment foot model (MFM) according to ankle OA stage and the presence of subtalar compensation defined by hindfoot alignment. Methods We retrospectively reviewed the medical records, plain radiographs, and gait MFM data of 54 ankles admitted to our hospital for the treatment of advanced ankle OA. Spatiotemporal gait parameters and three-dimensional motions of the hindfoot segment were analyzed according to sex, age, body mass index, Takakura classification, and the presence of subtalar compensation. Twenty ankles were categorized as compensated group, and 34 ankles as decompensated group. Results No spatiotemporal gait parameters differed significantly according to the presence of subtalar compensation or ankle OA stage. Only normalized step width differed significantly (P = 0.028). Average hindfoot motion (decompensation vs. compensation) did not differ significantly between the sagittal and transverse planes. Graphing of the coronal movement of the hindfoot revealed collapsed curves in both groups that differed significantly. Compared with Takakura stages 3a, 3b, and 4, cases of more advanced stage 3b had a smaller sagittal range of motion than those of stage 3a (P = 0.028). Coronal movement of the hindfoot in cases of Takakura stage 3a/3b/4 showed a relatively flat pattern. Conclusions The spatiotemporal parameters were not affected by the hindfoot alignment resulting from subtalar compensation. The sagittal range of hindfoot motion decreased in patients with advanced ankle OA. Once disrupted, the coronal movement of the subtalar joint in ankle OA did not change regardless of ankle OA stage or hindfoot compensation state.

Funder

Bio & Medical Technology Development Program of the National Research Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3