Finite element analysis of a novel anatomical locking plate for scapular neck fracture

Author:

Xiang Feifan,Xiao Yukun,Wei Daiqing,Tan Xiaoqi,He Siyuan,Luo Liang,Yang Yunkang

Abstract

Abstract Objectives Reconstruction plates (RPs) are commonly used in scapular neck fractures (SNFs): however, RPs have many defects. In this study, we evaluated a newly designed scapular neck anatomical locking compression plate (SNALCP). Methods An SNF finite element model (Miller-type IIB) was constructed. Plates were subsequently implanted into the scapula and fixed with screws that were grouped according to the plate used: SNALCP (A) and RP (B). Finally, loads were applied to record and analyze performance. Results Under lateral, anteroposterior, and vertical compression loads, the maximum von Mises stresses on the scapula and implants of group A were smaller than those of group B. There were some differences in stress distribution between the two groups. Conclusions SNALCP can effectively reduce the stress of the scapula and implant, making stress distribution more uniform and continuous, and has mechanical conduction advantages. Compared to RP, it provides improved stability and more reliable fixation.

Funder

the Luzhou Science and Technology Bureau Project

the Natural Science Foundation of Sichuan Province

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3