Biomechanical comparative finite element analysis between a conventional proximal interphalangeal joint flexible hinge implant and a novel implant design using a rolling contact joint mechanism

Author:

Kim Yong-Jae,Bae Hyun-ah,Hong Seok Woo

Abstract

Abstract Background The rolling contact joint (RCJ) mechanism is a system of constraint that allows two circular bodies connected with flexible straps to roll relative to one another without slipping. This study aims to compare the biomechanical characteristics between the conventional proximal interphalangeal joint (PIPJ) flexible hinge (FH) implant and the novel PIPJ implant adopting a RCJ mechanism during PIPJ range of motion using finite element (FE) analysis. Methods The three-dimensional (3D) surface shape of a conventional PIPJ FH implant was obtained using a 3D laser surface scanning system. The configuration and parameters of the novel PIPJ implant were adapted from a previous study. The two implants were assumed to have the same material characteristics and each implant was composed of a hyperelastic material, silicone elastomers. The configuration data for both implants were imported to a computer-aided design program to generate 3D geometrical surface and hyperelastic models of both implants. The hyperelastic models of both implants were imported into a structural engineering software to produce the FE mesh and to perform FE analysis. The FE analysis modeled the changes of mechanics during flexion–extension motion between 0° and 90° of two PIPJ implants. The mean and maximum values of von-Mises stress and strain as well as the total moment reaction based on the range of motion of the PIPJs were calculated. The mean values within the PIPJ’s functional range of motion of the mean and maxinum von-Mises stress and strain and the total moment reaction were also determined. Results The maximum values for the von-Mises stress, and strain, as well as the total moment reactions of the conventional PIPJ FH and novel PIPJ implants were all at 90° of PIPJ flexion. The maximum value of each biomechanical property for the novel PIPJ implant was considerably lower compared with that of the conventional PIPJ FH implant. The mean values within the PIPJ’s functional range of motion of the maximum von-Mises stress and strain for the novel PIPJ implant was approximately 6.43- and 6.46-fold lower compared with that of the conventional PIPJ FH implant, respectively. The mean value within a PIPJ’s functional range of motion of the total moment reaction of the novel PIPJ implant was approximately 49.6-fold lower compared with that of the conventional PIPJ FH implant. Conclusions The novel PIPJ implant with an RCJ mechanism may offer improved biomechanical performance compared with conventional PIPJ FH implant.

Funder

Kangbuk Samsung Hospital Medical Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3