Biomechanical insights into ankle instability: a finite element analysis of posterior malleolus fractures

Author:

Ying Jichong,Liu Jianlei,Wang Hua,Zhuang Yunqiang,Yu Tianming,Wang Shuaiyi,Huang Dichao

Abstract

Abstract Background Posterior malleolus fractures are known to be associated with ankle instability. The complexities involved in obtaining precise laboratory-based spatial pressure measurements of the ankle highlight the significance of exploring the biomechanical implications of these fractures. Methods Finite element analysis was utilized to examine the stress distribution across the contact surface of the ankle joint, both in its natural state and under varied sagittal fracture line angles. The study aimed to identify stress concentration zones and understand the influence of sagittal angles on stress distribution. Results Three distinct stress concentration zones were identified on the ankle's contact surface: the anterolateral tibia, the anteromedial tibia, and the fracture line. The most significant stress was observed at the fracture line when a fracture occurs. Stress at the fracture line notably spikes as the sagittal angle decreases, which can potentially compromise ankle stability. Larger sagittal angles exhibited only minor stress variations at the contact surface's three vertices. It was inferred that sagittal angles below 60° might pose risks to ankle stability. Conclusions The research underscores the potential implications of fractures on the stress profile of the ankle joint, emphasizing the role of the contact surface in ensuring stability. The identification of three zones of stress concentration and the influence of sagittal angles on stress distribution offers a valuable reference for therapeutic decision-making. Further, the study reinforces the importance of evaluating sagittal fracture angles, suggesting that angles below 60° may compromise ankle stability.

Funder

Agriculture and Community Development Projects of Yinzhou District, China

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3