Anteroinferior bundle of the acromioclavicular ligament plays a substantial role in the joint function during shoulder elevation and horizontal adduction: a finite element model

Author:

Velasquez Garcia AusbertoORCID,Salamé Castillo Farid,Ekdahl Giordani Max,Mura Mardones Joaquin

Abstract

Abstract Background Postoperative acromioclavicular (AC) ligament deficiency has been identified as a common cause of failure after isolated coracoclavicular reconstruction. The two-bundle arrangement of the acromioclavicular ligament has recently been reported in histological and anatomical research. In addition, a clear structural advantage of the superoposterior bundle (SPB) over the less consistent anteroinferior bundle (AIB) was also found. However, the current understanding of the function of the acromioclavicular ligament in joint stability is based on uniaxial bone loading experiments and sequential ligament sectioning. Consequently, these rigid biomechanics models do not reproduce the coupled physiological kinematics, neither in the normal joint nor in the postoperative condition. Therefore, our goal was to build a quasi-static finite element model to study the function of the acromioclavicular ligament based on its biomechanical performance patterns using the benefits of computational models. Methods A three-dimensional bone model is reconstructed using images from a healthy shoulder. The ligament structures were modeled according to the architecture and dimensions of the bone. The kinematics conditions for the shoulder girdle were determined after the osseous axes aligned to simulate the shoulder elevation in the coronal plane and horizontal adduction. Three patterns evaluated ligament function. The peak von Mises stress values were recorded using a clock model that identified the stress distribution. In addition, the variation in length and displacement of the ligament during shoulder motion were compared using a two-tailed hypotheses test. P values < 0.01 were considered statistically significant. Results The peak von Mises stress was consistently observed in the AIB at 2:30 in coronal elevation (4.06 MPa) and horizontal adduction (2.32 MPa). Except in the position 2:00, statistically significant higher deformations were identified in the two bundles during shoulder elevation. The highest ligament displacement was observed on the Y- and Z-axes. Conclusions The AIB has the primary role in restricting the acromioclavicular joint during shoulder motion, even though the two bundles of the AC ligament have a complementary mode of action. During horizontal adduction, the SPB appears to prevent anterior and superior translation.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3