Changes in hip joint contact stress during a gait cycle based on the individualized modeling method of “gait-musculoskeletal system-finite element”

Author:

Xiong Binglang,Yang Peng,Lin Tianye,Xu Jingli,Xie Yong,Guo Yongliang,Liu Churong,Zhou QIzhao,Lai Qizhong,He Wei,Wei Qiushi,Zhang QingwenORCID

Abstract

Abstract Objective To construct a comprehensive simulation method of “gait-musculoskeletal system (MS)-finite element (FE)” for analysis of hip joint dynamics characteristics and the changes in the contact stress in the hip throughout a gait cycle. Methods Two healthy volunteers (male and female) were recruited. The 3D gait trajectories during normal walking and the CT images including the hip and femur of the volunteers were obtained. CT imaging data in the DICOM format were extracted for subjected 3D hip joint reconstruction. The reconstructed 3D model files were used to realize the subject-specific registration of the pelvis and thigh segment of general musculoskeletal model. The captured marker trajectory data were used to drive subject-specific musculoskeletal model to complete inverse dynamic analysis. Results of inverse dynamic analysis were exported and applied as boundary and load settings of the hip joint finite element in ABAQUS. Finally, the finite element analysis (FEA) was performed to analyze contact stress of hip joint during a gait cycle of left foot. Results In the inverse dynamic analysis, the dynamic changes of the main hip-femoral muscle force with respect to each phase of a single gait cycle were plotted. The hip joint reaction force reached a maximum value of 2.9%BW (body weight) and appeared at the end of the terminal stance phase. Twin peaks appeared at the initial contact phase and the end of the terminal stance phase, respectively. FEA showed the temporal changes in contact stress in the acetabulum. In the visual stress cloud chart, the acetabular contact stress was mainly distributed in the dome of the acetabulum and in the anterolateral area at the top of the femoral head during a single gait cycle. The acetabular contact area was between 293.8 and 998.4 mm2, and the maximum contact area appear at the mid-stance phase or the loading response phase of gait. The maximum contact stress of the acetabulum reached 6.91 MPa for the model 1 and 6.92 MPa for the model 2 at the terminal stance phase. Conclusions The “Gait-MS-FE” technology is integrated to construct a comprehensive simulation framework. Based on human gait trajectories and their CT images, individualized simulation modeling can be achieved. Subject-specific gait in combination with an inverse dynamic analysis of the MS provides pre-processing parameters for FE simulation for more accurate biomechanical analysis of hip joint. Graphical abstract

Funder

the Natural Science Foundation of China

Natural Science Foundation of Guangdong

Scientific Research Project of Chinese Medicine of Guangdong

Excellent Doctoral Dissertation Incubation Grant of First Clinical School of Guangzhou University of Chinese Medicine

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3