Author:
Chen Rong,Li Xiangwei,Sun Zhibo,Yin Junyi,Hu Xiaowei,Deng Jingwen,Liu Xinghui
Abstract
Abstract
Objective
Osteoarthritis (OA) presents cartilage damage in addition to chronic inflammation. However, self-recovery of damaged cartilage in an inflammatory environment is not possible. Mesenchymal stem cells (MSCs) in the bone marrow are a source of regenerative repair of damaged cartilage. To date, whether intra-luminal administration of the bone marrow can delay the progression of OA is still unknown. This study, therefore, aimed to explore the role of intra-bone marrow injection of Magnesium isoglycyrrhizinate (MgIG) in delaying the OA progression and to investigate the underlying mechanism.
Methods
Rabbit OA models were established using the anterior cruciate ligament transection method while a catheter was implanted into the bone marrow cavity. 1 week after surgery, MgIG treatment was started once a week for 4 weeks. The cartilage degradation was analyzed using hematoxylin–eosin staining, Masson’s trichrome staining and Alcian blue staining. Additionally, the pro-inflammatory factors and cartilage regeneration genes involved in the cartilage degeneration and the underlying mechanisms in OA were detected using enzyme-linked immunosorbent assay, quantitative real-time PCR (qRT-PCR) and Western blotting.
Results
The results of histological staining revealed that intra-bone marrow injection of MgIG reduced degeneration and erosion of articular cartilage, substantially reducing the Osteoarthritis Research Society International scores. Furthermore, the productions of inflammatory cytokines in the bone marrow cavity and articular cavity such as interleukin-1β(IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) were inhibited upon the treatment of MgIG. At the same time, the expression of alkaline phosphate, tartrate-resistant acid phosphatase-5b (TRAP-5b) and C-telopeptides of type II collagen (CTX-II) in the blood also decreased and was positively correlated. On the contrary, cartilage-related genes in the bone marrow cavity such as type II collagen (Col II), Aggrecan (AGN), and SRY-box 9 (SOX9) were up-regulated, while matrix metalloproteinase-3 (MMP-3) was down-regulated. Mechanistically, MgIG was found to exert an anti-inflammatory effect and impart protection to the cartilage by inhibiting the NF-κB pathway.
Conclusion
Intra-bone marrow injection of MgIG might inhibit the activation of the NF-κB pathway in the progression of OA to exert an anti-inflammatory effect in the bone marrow cavity and articular cavity, thereby promoting cartilage regeneration of MSCs in the bone marrow, making it a potential new therapeutic intervention for the treatment of OA.
Funder
Scientific and Technological Project of Shiyan City of Hubei Province
Undergraduate Training Programs for Innovation and Entrepreneurship of Hubei University of Medicine
Health Commission of Hubei Province
Cultivating Project for Young Scholar at Hubei University of Medicine
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Surgery
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献