Application of a combined cancellous lag screw enhances the stability of locking plate fixation of osteoporotic lateral tibial plateau fracture by providing interfragmentary compression force

Author:

Jiang Jiang,Xu Daqiang,Ji Zhenhua,Wang Fei,Jia Rui,Wang Jun,Hong Hong,Zhang Hongtao,Li Jianyi

Abstract

Abstract Background Insufficient interfragmentary compression force (IFCF) frequently leads to unstable fixation of osteoporotic lateral tibial plateau fractures (OLTPFs). A combined cancellous lag screw (CCLS) enhances IFCF; however, its effect on OLTPF fixation stability remains unclear. Therefore, we investigated the effect of CCLS on OLTPF stability using locking plate fixation (LPF). Materials and methods Twelve synthetic osteoporotic tibial bones were used to simulate OLTPFs, which were fixed using LPF, LPF-AO cancellous lag screws (LPF-AOCLS), and LPF-CCLS. Subsequently, 10,000 cyclic loadings from 30 to 400 N were performed. The initial axial stiffness (IAS), maximal axial micromotion of the lateral fragment (MAM-LF) measured every 1000 cycles, and failure load after 10,000 cycles were tested. The same three fixations for OLTPF were simulated using finite element analysis (FEA). IFCFs of 0, 225, and 300 N were applied to the LPF, LPF-AOCLS, and LPF-CCLS, respectively, with a 1000-N axial compressive force. The MAM-LF, peak von Mises stress (VMS), peak equivalent elastic strain of the lateral fragment (EES-LF), and nodes of EES-LF > 2% (considered bone destruction) were calculated. Results Biomechanical tests revealed the LPF-AOCLS and LPF-CCLS groups to be superior to the LPF group in terms of the IAS, MAM-LF, and failure load (all p < 0.05). FEA revealed that the MAM-LF, peak VMS, peak EES-LF, and nodes with EES-LF > 2% in the LPF were higher than those in the LPF-AOCLS and LPF-CCLS. Conclusion IFCF was shown to enhance the stability of OLTPFs using LPF. Considering overscrewing, CCLS is preferably recommended, although there were no significant differences between CCLS and AOCLS.

Funder

National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation and Jiangsu China-Israel Industrial Technical Research Institute Foundation

Special Project of Clinical Medicine of Nantong University

Natural Science Foundation of Guangdong Province

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3