Learning curve analysis of robotic-assisted total knee arthroplasty with a Chinese surgical system

Author:

Zhang Haoran,Bai Xizhuang,Wang Huisheng,Zhu Zhiyong,Li Xi

Abstract

Abstract Purpose The aim of this study was to analyze the learning curve of total operative time, bone cutting accuracy, and limb alignment in total knee arthroplasty (TKA) using a Chinese image-based knee surgery robot known as HURWA. Additionally, a comparison was conducted with conventional TKA to ascertain the benefits of robotic-assisted TKA. Methods In this retrospective study, we analyzed a series of patients (n = 90) who underwent robotic-assisted total knee arthroplasty using the HURWA robot between December 2021 and October 2022. The procedures were performed by one of three orthopedic surgeons with varying levels of experience. As a control group, we selected the last 30 conventional TKA cases performed by each of these three surgeons. To determine the learning curve, we recorded the operative time, bone cutting error, and pre- and post-surgery radiographs. Results The study found no significant differences in total operative time, bone cutting accuracy, or limb alignment among the three surgeons. Of the three surgeons, surgeon 1, who had the most experience in joint arthroplasty, reached the learning curve in case 8, with the shortest bone cutting time and robot time. Surgeon 2 reached the learning curve in case 16, while surgeon 3 reached the learning curve in case 9. There was no observable learning curve effect for bone cutting accuracy and limb alignment. However, the percentage of cases where limb alignment differed from preoperative planning by 3° or less was higher in robotic-assisted TKA (77.97%) than in conventional TKA (47.19%). Conclusion The study determined that the learning curve for robotic-assisted TKA using the HURWA knee surgery robot ranged from 8 to 20 cases. No observable learning curve effect was detected for bone cutting accuracy or limb alignment. Experienced surgeons using the HURWA robot for bone cutting took less time and reached the learning curve earlier. The HURWA robot achieved better limb alignment without depending on the experience of conventional TKA.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3