Identification of key ferroptosis-related biomarkers in steroid-induced osteonecrosis of the femoral head based on machine learning

Author:

Liu Jian,Han Xueliang,Qu Lianjun,Du Bencai

Abstract

Abstract Background This study was aimed to identify key ferroptosis-related biomarkers in steroid-induced osteonecrosis of the femoral head (SONFH) based on machine learning algorithm. Methods The SONFH dataset GSE123568 (including 30 SONFH patients and 10 controls) was used in this study. The differentially expressed genes (DEGs) were selected between SONFH and control groups, which were subjected to WGCNA. Ferroptosis-related genes were downloaded from FerrDb V2, which were then compared with DEGs and module genes. Two machine learning algorithms were utilized to identify key ferroptosis-related genes, and the underlying mechanisms were analyzed by GSEA. Correlation analysis between key ferroptosis-related genes and immune cells was analyzed by Spearman method. The drug–gene relationships were predicted in CTD. Results Total 2030 DEGs were obtained. WGCNA identified two key modules and obtained 1561 module genes. Finally, 43 intersection genes were identified as disease-related ferroptosis-related genes. After LASSO regression and RFE-SVM algorithms, 4 intersection genes (AKT1S1, BACH1, MGST1 and SETD1B) were considered as key ferroptosis-related gene. The 4 genes were correlated with osteoclast differentiation pathway. Twenty immune cells with significant differences were obtained between the groups, and the 4 key ferroptosis-related genes were correlated with most immune cells. In CTD, 41 drug–gene relationship pairs were finally obtained. Conclusions The 4 key ferroptosis-related genes, AKT1S1, BACH1, MGST1 and SETD1B, were identified to play a critical role in SONFH progression through osteoclast differentiation and immunologic mechanisms. Additionally, all the 4 genes had good disease prediction effect and could act as biomarkers for the diagnosis and treatment of SONFH.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3