Recombinant TSG-6 protein inhibits the growth of capsule fibroblasts in frozen shoulder via suppressing the TGF-β/Smad2 signal pathway

Author:

Liu Zhongfan,Pei Yongrong,Zeng Hao,Yang Yibo,Que Meng,Xiao Yuhui,Wang Jing,Weng Xiaojun

Abstract

Abstract Background The tumor necrosis factor-stimulated gene-6 (TSG-6) has been confirmed to inhibit inflammation. It is now generally accepted that local inflammatory stimulation around shoulder capsule causes proliferative fibrosis. This study aims to investigate the mechanism of recombinant TSG-6 protein inhibiting the growth of capsule fibroblasts in frozen shoulder via the TGF-β/Smad2 signal pathway. Methods Human frozen shoulder capsule tissue was taken for primary and passage culture, and the 3rd generation fibroblasts from pathological frozen shoulder capsule were treated with different concentrations of recombinant TSG-6 protein, or with TGF-β1 agonist SRI-011381. Immunoconfocal analysis was used to identify the isolated fibroblasts, and MTT assay, colony formation assay, and flow cytometry were used to detect the viability, proliferation, and apoptosis rate of fibroblast. The contents of fibrosis and inflammation indexes COL1A1, TNF-α, IL-6, and IL-1β in the cell supernatant were detected using ELISA and then further examined by qRT-PCR. The expression of Bax, Bcl-2, and proteins related to TGF-β/Smad2 pathway were detected by Western Blot. Results Compared with the blank control group, fibroblasts intervened with TSG-6 (2 μg and 5 μg) showed significantly decreased viability and proliferation ability and enhanced cell apoptosis, concurrent with the reductions in Bcl-2 expression; COL1A1, TNF-α, IL-6, and IL-1β levels; and the expression of TGF-β1 and phosphorylated Smad22, and an increase in Bax expression, while SRI-011381 treatment would reverse the effect of recombinant TSG-6 protein. Conclusion Recombinant TSG-6 protein inhibited the growth of primary fibroblasts from human frozen shoulder capsule by suppressing the TGF-β/Smad2 signaling pathway.

Funder

hunan provincial health commission

hunan provincial science and technology department clinical medical technology innovation guiding project

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3