3D-printed PCL/β-TCP/CS composite artificial bone and histocompatibility study

Author:

Zheng Chao,Zhang Mingman

Abstract

Abstract Background Tissue-engineered bone materials are an effective tool to repair bone defects. In this study, a novel biodegradable polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP)/calcium sulfate (CS) composite scaffold was prepared by using three-dimensional (3D) printing technology. Methods Scanning electron microscopy, gas expansion displacement, and contact goniometry were used to examine the 3D-printed PCL/β-TCP/CS composite scaffolds. The results showed that the PCL/β-TCP/CS scaffolds possessed controllable porosity, hydrophobicity, biodegradability, and suitable apatite mineralization ability. To confirm the bone regenerative properties of the fabricated composite scaffolds, scaffold extracts were prepared and evaluated for their cytotoxicity to bone marrow mesenchymal stem cells (BMSCs) and their ability to induce and osteogenic differentiation in BMSCs. Results The PCL/β-TCP/CS composite scaffolds induced a higher level of differentiation of BMSCs than the PCL scaffolds, which occurred through the expression of bone metastasis-related genes. The New Zealand white rabbit radial defect experiment further demonstrated that PCL/β-TCP/CS scaffolds could promote bone regeneration. Conclusions In summary, the 3D-printed PCL/β-TCP/CS composite porous artificial bone has good cytocompatibility, osteoinductivity, and histocompatibility, which make it an ideal bone material for tissue engineering.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3