A novel and efficient murine model for investigating tendon-to-bone healing

Author:

Xu Baoyun,Wang Yunjiao,He Gang,Tang Kang-lai,Guo Lin,Chen Wan

Abstract

Abstract Background Tendon-to-bone healing is a critical challenge in sports medicine, with its cellular and molecular mechanisms yet to be explored. An efficient murine model could significantly advance our understanding of this process. However, most existing murine animal models face limitations, including a propensity for bleeding, restricted operational space, and a steep learning curve. Thus, the need for a novel and efficient murine animal model to investigate the cellular and molecular mechanisms of tendon-to-bone healing is becoming increasingly evident. Methods In our study, forty-four 9-week-old male C57/BL6 mice underwent transection and reattachment of the Achilles tendon insertion to investigate tendon-to-bone healing. At 2 and 4 weeks postoperatively, mice were killed for histological, Micro-CT, biomechanical, and real-time polymerase chain reaction tests. Results Histological staining revealed that the original tissue structure was disrupted and replaced by a fibrovascular scar. Although glycosaminoglycan deposition was present in the cartilage area, the native structure had been destroyed. Biomechanical tests showed that the failure force constituted approximately 44.2% and 77.5% of that in intact tissues, and the ultimate tensile strength increased from 2 to 4 weeks postoperatively. Micro-CT imaging demonstrated a gradual healing process in the bone tunnel from 2 to 4 weeks postoperatively. The expression levels of ACAN, SOX9, Collagen I, and MMPs were detected, with all genes being overexpressed compared to the control group and maintaining high levels at 2 and 4 weeks postoperatively. Conclusions Our results demonstrate that the healing process in our model is aligned with the natural healing process, suggesting the potential for creating a new, efficient, and reproducible mouse animal model to investigate the cellular and molecular mechanisms of tendon-to-bone healing. Graphical abstract

Funder

National Science Foundation for Young Scientists of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3