Abstract
Abstract
Background
Spontaneous Achilles tendon rupture associated with long-term dexamethasone (Dex) use has been reported. However, few studies have investigated the potential mechanism. The aim of this study was to evaluate the effects of oral Dex on type I collagen in humans and rats and its association with tendon rupture.
Methods
First, six Achilles tendons from patients who received long-term Dex treatment, and another six normal tendons were harvested for histological evaluation. Secondly, 8-week-old rats (n = 72) were randomly assigned to a Dex group or a control group. Type I collagen was studied at the mechanical, histological, and molecular levels after 3 and 5 weeks. Tenocytes isolated from normal human and rat tendon were used to investigate the effect of Dex on cellular scale.
Results
Histological analysis of human and rat tendon tissue revealed an irregular, disordered arrangement of type I collagen in the Dex group compared with the control group. In addition, In the Dex+ group, type I collagen expression decreased in comparison with the Dex− group in both human and rat tenocytes. The mechanical strength of tendons was significantly reduced in the Dex group (68.87 ± 11.07 N) in comparison with the control group (81.46 ± 7.62 N, P = 0.013) after 5 weeks. Tendons in the Dex group were shorter with smaller cross-sectional areas (10.71 ± 0.34 mm2, 1.44 ± 0.22 mm2, respectively) after 5 weeks than those in the control group (11.13 ± 0.50 mm2, P = 0.050, 2.74 ± 0.34 mm2, P < 0.001, respectively).
Conclusions
This finding suggests long-term use of Dex that decreases the expression of type I collagen at molecular and tissue levels both in human and rat Achilles tendons. Furthermore, Dex decreases the mechanical strength of the tendon, thereby increasing the risk of Achilles tendon rupture.
Funder
National Science Foundation for Young Scientists of China
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Surgery
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献