Static mechanical analysis of the vertebral body after modified anterior cervical discectomy and fusion (partial vertebral osteotomy): a finite element model

Author:

Xue Huo-huo,Tang Dian,Zhao Wen-han,Chen Liang,Liao Zhong,Xue Jing-lai

Abstract

Abstract Background Modified anterior cervical discectomy and fusion (Mod ACDF) can effectively address ossification of the posterior longitudinal ligament (OPLL), which is difficult to remove directly from the posterior edge of the vertebral body, with considerably lesser damage as compared to anterior cervical corpectomy and fusion (ACCF). We compared the static mechanics of different anterior approaches by using an ideal finite element model. Methods A complete finite element model was established and classified into the following three surgical models according to different model cutting operations: ACDF, ACCF, and Mod ACDF. Three different bone volume situations (normal bone mineral density, osteopenia, and osteoporosis) were simulated. After fixing the lower surface of C5 or C6, a load was applied to the upper surface of C4, and the stress distribution and displacement of the upper surface of C5 or C6 were observed and the related values were recorded. Results The average Von Mises Stress and displacement levels of Mod ACDF were between those of ACDF and ACCF; with the peak Von Mises Stress occurring on the posterior side of the vertebral body (Points 1–4). The change in Von Mises Stress of the vertebral body is not significant during bone loss. However, the degree of displacement of the vertebral body surface and risk of vertebral collapse are increased (100 N: 13.91 vs. 19.47 vs. 21.62 μm; 150 N: 19.60 vs. 29.30 vs. 31.64 μm; 200 N: 28.53 vs. 38.65 vs. 44.83 μm). Conclusions The static biomechanical effects caused by Mod ACDF are intermediate between ACDF and ACCF, and the risk of vertebral body collapse is lower than that by ACCF. Therefore, Mod ACDF may be an effective solution when targeting OPLL with poorly positioned posterior vertebral body edges.

Funder

Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3