Separate vertical wiring plus bilateral anchor girdle suturing fixation for the fractures of the inferior pole of the patella

Author:

Li Shi-Jie,Tiwari Shashi Ranjan,Chang Shi-Min,Du Shou-Chao,Zhang Ying-Qi

Abstract

Abstract Background The fixation of inferior pole fractures of the patella (IPFPs) is still a great challenge for surgeons. Materials and methods We introduced a new fixation method for IPFP fixation, that is, separate vertical wiring plus bilateral anchor girdle suturing fixation (SVW-BSAG). Three finite element models including the anterior tension band wiring (ATBW) model, separate vertical wiring (SVW) model and SVW-BSAG model, were built to evaluate the fixation strength of different fixation methods. A total of 41 consecutive patients with IPFP injury were enrolled in this retrospective study, including 23 patients in the ATBW group and 18 patients in the SVW-BSAG group. The operation time, radiation exposure, full weight-bearing time, Bostman score, extension lag versus contralateral healthy leg, Insall–Salvati ratio, and radiograph outcomes were employed to assess and compare the ATBW group and SVW-BSAG group. Results The finite element analysis confirmed that the SVW-BSAG fixation method was as reliable as the ATBW fixation method in terms of fixed strength. Through retrospective analysis, we found that there was no significant difference between the SVW-BSAG and ATBW groups in age, sex, BMI, fracture side, fracture type, or follow-up time. There were no significant differences between the two groups in the Insall–Salvati ratio, 6-month Bostman score, and fixation failure. Compared with the ATBW group, the SVW-BSAG group showed advantages in intraoperative radiation exposure, full weight-bearing time, and extension lag versus the contralateral healthy leg. Conclusion The finite element analysis and clinical results showed that SVW-BSAG fixation methods are a reliable and valuable for IPFP treatment.

Funder

National Nature Science Foundation of China

Shanghai Municipal Health Commission

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3