Patient-specific three-dimensional evaluation of interface micromotion in two different short stem designs in cementless total hip arthroplasty: a finite element analysis

Author:

Kanaizumi Arata,Suzuki Daisuke,Nagoya Satoshi,Teramoto Atsushi,Yamashita Toshihiko

Abstract

Abstract Background Evaluation of micromotion in various activities in daily life is essential to the assessment of the initial fixation of cementless short stems in total hip arthroplasty. This study sought to evaluate three-dimensionally the micromotion of two types of cementless short stems. Methods Two types of stems were used: the Fitmore stem with a rectangular cross-section (rectangular stem) and the octagonal-oval GTS stem with fins (finned stem). Finite element analysis was used to calculate the micromotion of two activities that place a heavy load on the stem (single-leg stance and stair climbing). Three values were measured: the magnitude of micromotion (mean and 95th percentile), the location of micromotion above the 95th percentile value, and the directions of the micromotion vector. Results 1. There was no significant difference in the magnitude of the micromotion between the rectangular stem and finned stem groups for single-leg stance or stair climbing. 2. In both groups, the micromotion was greatest at the proximal and distal ends. 3. The direction of the micromotion was similar in both groups; internal rotation occurred from the distal to the middle of the stem during stair climbing. Conclusions The rectangular stem had comparable initial fixation to that of the finned stem. In both models, the micromotion was greater at the proximal and distal ends. The direction of the micromotion was not dependent on the stem shape but on the direction of the load on the artificial femoral head. These results will be important for stem selection and future stem development.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3