Rhizoma drynariae total flavonoids combined with calcium carbonate ameliorates bone loss in experimentally induced Osteoporosis in rats via the regulation of Wnt3a/β-catenin pathway

Author:

Hu YimeiORCID,Mu Panyun,Ma Xu,Shi Jingru,Zhong Zhendong,Huang Lingyuan

Abstract

Abstract Background Rhizoma drynariae, a traditional Chinese herb, is commonly used in treatment of bone healing in osteoporotic fractures. However, whether the Rhizoma drynariae total flavonoids (RDTF) can promote the absorption of calcium and enhance the bone formation is unclear. The aim of the present study was to investigate the preventive effects of RDTF combined with calcium carbonate (CaCO3) on estrogen deficiency-induced bone loss. Methods Three-month-old Sprague–Dawley rats were ovariectomized (OVX) and then treated with CaCO3, RDTF, and their admixtures for ten weeks, respectively. The bone trabecular microstructure, bone histopathological examination, and serum biomarkers of bone formation and resorption were determined in the rat femur tissue. The contents of osteoprotegerin (OPG), receptor activator of the NF-κB (RANK), and its ligand (RANKL) in marrow were analyzed by ELISA, and the protein expressions of Wnt3a, β-catenin, and phosphorylated β-catenin (p-β-catenin) were analyzed by Western blot. Statistical analysis was conducted by using one-way analysis of variance (ANOVA) followed by LSD post hoc analysis or independent samples t test using the scientific statistic software SPSS version 20.0 Results RDTF combined with CaCO3 could promote osteosis and ameliorate bone loss to improve the repair of cracked bone trabeculae of OVX rats. Furthermore, RDTF combined with CaCO3 also could prevent OVX-induced decrease in collagen fibers in the femoral tissue of ovariectomized rats and promote the regeneration of new bone or cartilage tissue, while CaCO3 supplementation promoted the increase in bone mineral content. Nevertheless, there was no difference in the expression of Wnt3a, β-catenin and p-β-catenin between osteopenic rats and RDTF treated rats, but RDTF combined with CaCO3 could activate the Wnt3a/β-catenin pathway. Conclusions RDTF combined with CaCO3 could ameliorate estrogen deficiency-induced bone loss via the regulation of Wnt3a/β-catenin pathway.

Funder

the Youth Project of National Natural Science Foundation of China

the Sichuan Health Department Project

the Sichuan Provincial Education Department Project

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3