MiR-98-5p plays suppressive effects on IL-1β-induced chondrocyte injury associated with osteoarthritis by targeting CASP3

Author:

Lv Hang,Liu Peiran,Hu Hai,Li Xiaodong,Li Pengfei

Abstract

Abstract Background This study aims to explore how miR-98-5p affects osteoarthritis, focusing on its role in chondrocyte inflammation, apoptosis, and extracellular matrix (ECM) degradation. Methods Quantitative real-time PCR was used to measure miR-98-5p and CASP3 mRNA levels in OA cartilage tissues and IL-1β-treated CHON-001 cells. We predicted miR-98-5p and CASP3 binding sites using TargetScan and confirmed them via luciferase reporter assays. Chondrocyte viability was analyzed using CCK-8 assays, while pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) were quantified via ELISA. Caspase-3 activity was examined to assess apoptosis, and Western blotting was conducted for protein marker quantification. Results Our results showed lower miR-98-5p levels in both OA cartilage and IL-1β-stimulated cells. Increasing miR-98-5p resulted in reduced pro-inflammatory cytokines, decreased caspase-3 activity, and improved cell viability. Furthermore, miR-98-5p overexpression hindered IL-1β-induced ECM degradation, evident from the decline in MMP-13 and β-catenin levels, and an increase in COL2A1 expression. MiR-98-5p's impact on CASP3 mRNA directly influenced its expression. Mimicking miR-98-5p's effects, CASP3 knockdown also inhibited IL-1β-induced inflammation, apoptosis, and ECM degradation. In contrast, CASP3 overexpression negated the suppressive effects of miR-98-5p. Conclusions In conclusion, our data collectively suggest that miR-98-5p plays a protective role against IL-1β-induced damage in chondrocytes by targeting CASP3, highlighting its potential as a therapeutic target for OA.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3