RNA sequencing and bioinformatics analysis of differentially expressed genes in the peripheral serum of ankylosing spondylitis patients

Author:

Bie Yongchen,Zheng Xiujun,Chen Xiaojiong,Liu Xiangyun,Wang Liqin,Sun Yuanliang,Kou Jianqiang

Abstract

Abstract Background Ankylosing spondylitis (AS) is a chronic progressive autoimmune disease characterized by spinal and sacroiliac arthritis, but its pathogenesis and genetic basis are largely unclear. Methods We randomly selected three serum samples each from an AS and a normal control (NC) group for high-throughput sequencing followed by using edgeR to find differentially expressed genes (DEGs). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes, Reactome pathway analyses, and Gene Set Enrichment Analysis were used to comprehensively analyze the possible functions and pathways involved with these DEGs. Protein–protein interaction (PPI) networks were constructed using the STRING database and Cytoscape. The modules and hub genes of these DEGs were identified using MCODE and CytoHubba plugins. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to validate the expression levels of candidate genes in serum samples from AS patients and healthy controls. Results We successfully identified 100 significant DEGs in serum. When we compared them with the NC group, 49 of these genes were upregulated in AS patients and 51 were downregulated. GO function and pathway enrichment analysis indicated that these DEGs were mainly enriched in several signaling pathways associated with endoplasmic reticulum stress, including protein processing in the endoplasmic reticulum, unfolded protein response, and ubiquitin-mediated proteolysis. We also constructed a PPI network and identified the highly connected top 10 hub genes. The expression levels of the candidate hub genes PPARG, MDM2, DNA2, STUB1, UBTF, and SLC25A37 were then validated by RT-qPCR analysis. Finally, receiver operating characteristic curve analysis suggested that PPARG and MDM2 may be the potential biomarkers of AS. Conclusions These findings may help to further elucidate the pathogenesis of AS and provide valuable potential gene biomarkers or targets for the diagnosis and treatment of AS.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3