3D surface reconstruction of the femur and tibia from parallel 2D contours

Author:

Lin Bigui,Jin DadiORCID,Socorro Borges Miguel Angel

Abstract

Abstract Background Segmented structures, such as bones, are typically stored as 2D contours contained on evenly spaced images (slices). Contour interpolation algorithms to turn 2D contours into a 3D surface may differ in their results, causing discrepancies in analysis. This study aimed to create an accurate and consistent algorithm for the interpolation of femur and tibial contours that can be used in computer-assisted surgical navigation systems. Methods The implemented algorithm performs contour interpolation in a step-by-step manner, determining an optimal surface between each pair of consecutive contours. Determining such a surface is reduced to the problem of finding certain minimum-cost cycles in a directed toroidal graph. The algorithm assumes that the contours are ordered. The first step in the algorithm is the determination of branching patterns, followed by the removal of keyholes from contours, optimization of a target function based on the surface area, and mesh triangulation based on the optimization results and mesh seal. Results The algorithm was tested on contours segmented on computed tomography images from femoral and tibial specimens; it was able to generate qualitatively good 3D meshes from the set of 2D contours for all the tested examples. Conclusion The contour interpolation algorithm proved to be quite effective using optimization based on minimizing the area of the triangles that form the 3D surface. The algorithm can be used for the 3D reconstruction of other types of 2D cuts, but special attention must be paid with the branches, since the proposed algorithm is not designed for complex branching structures.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3