The impact of different artificial disc heights during total cervical disc replacement: an in vitro biomechanical study

Author:

Wang Xiao-Fei,Meng Yang,Liu Hao,Wang Bei-Yu,Hong Ying

Abstract

Abstract Background The principles of choosing an appropriate implant height remain controversial in total cervical disc replacement (TDR). By performing an in vitro biomechanical study and exploring the biomechanical impact of implant height on facet joint and motion function, the study aimed to offer valid proposals regarding implant height selection during TDR. Methods A total of 6 fresh-frozen male cadaveric cervical spines (C2–C7) with 5 mm intervertebral disc height at C5/6 level were enrolled in the study. Specimens with the intact condition and with different height artificial discs were tested. Facet joint pressures and range of motion under each condition were recorded using a specialized machine. Results The artificial disc heights that were involved in this study were 5 mm, 6 mm, and 7 mm. The range of motion decreased along with the increment of implant height, while facet joint pressure showed an opposite trend. Specimens with a 5 mm implant height could provide a similar range of motion (11.8° vs. 12.2° in flexion-extension, 8.7° vs. 9.0° in rotation, 7.9° vs. 8.2° in lateral bending) and facet joint pressure (27.8 psi vs. 25.2 psi in flexion, 59.7 psi vs. 58.9 psi in extension, 24.0 psi vs. 22.7 psi in rotation, 32.0 psi vs. 28.8 psi in lateral bending) compared with intact specimens. Facet joint pressure of specimens with 6 mm implant height (≥ 1 mm in height) increased during flexion at the C5–6 segment (30.4 psi vs. 25.2 psi, P = 0.076). However, specimens with 7 mm implant height (≥ 2 mm in height) showed a significant reduction in motion (9.5° vs. 12.2° in flexion-extension, P < 0.001) and increment of facet joint pressure at C5–6 segment (44.6 psi vs. 25.2 psi in flexion, 90.3 psi vs. 58.9 psi in extension, P < 0.0001) and adjacent segments. Conclusions This study suggested that an appropriate artificial disc height can achieve near-normal biomechanical properties and is recommended. We should be very cautious when using artificial discs ≥ 1 mm in height compared to normal. However, implants ≥ 2 mm in height compared to normal significantly increased the facet joint pressure and decreased the range of motion; therefore, it should not be used in clinical practice.

Funder

West China Hospital, Sichuan University

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Reference27 articles.

1. Dong L, Xu Z, Chen X, Wang D, Li D, Liu T, et al. The change of adjacent segment after cervical disc arthroplasty compared with anterior cervical discectomy and fusion: a meta-analysis of randomized controlled trials. Spine J. Elsevier Inc.; 2017; 17:1549–1558. Available from: https://doi.org/10.1016/j.spinee.2017.06.010.

2. Laxer EB, Brigham CD, Darden BV, Bradley Segebarth P, Alden Milam R, Rhyne AL, et al. Adjacent segment degeneration following ProDisc-C total disc replacement (TDR) and anterior cervical discectomy and fusion (ACDF): does surgeon bias effect radiographic interpretation? Eur Spine J. 2017;26:1199–204.

3. Park DK, Lin EL, Phillips FM. Index and adjacent level kinematics after cervical disc replacement and anterior fusion: in vivo quantitative radiographic analysis. Spine (Phila Pa 1976). 2011;36:721–30.

4. Meng Y, Wang X, Zhao Z, Wang B, Wu T, Liu H. Intraoperative anterior migration of the Prestige-LP disc due to an inappropriate implantation sequence during continuous two-level artificial cervical disc replacement: a case report with an 8-year follow up. World Neurosurg. Elsevier Inc; 2018;116:A2–A5. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1878875018310465.

5. Hu Y, Lv G, Ren S, Johansen D. Mid- to long-term outcomes of cervical disc arthroplasty versus anterior cervical discectomy and fusion for treatment of symptomatic cervical disc disease: a systematic review and meta-analysis of eight prospective randomized controlled trials. PLoS One. 2016;11:1–17.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3