Identification of circular RNAs hsa_circ_0140271 in peripheral blood mononuclear cells as a novel diagnostic biomarker for female rheumatoid arthritis

Author:

Chen Yufeng,Xu Xianghe,Li Xuegang,Zhong Junlong,Wu Biao,Shang Jie,Jiang Ning,Wang Bin,Zhong Shuping,Lu Huading

Abstract

Abstract Background Rheumatoid arthritis (RA) is a chronic autoimmune disease, which commonly affects women. Accumulating evidence shows that differentially expressed circular RNAs (circRNAs) play crucial roles in the progress of RA. However, the roles of circRNAs in female RA remains unclear. This study explores potential role and diagnostic value of hsa_circ_0140271 from peripheral blood mononuclear cells (PBMC) in female RA. Methods Differential expression of circRNAs was determined by RNA-sequencing in PBMC from 4 healthy controls (HC) and 4 RA patients, and we further measured the level of hsa_circ_0140271 in a validation cohort consisting of 47 RA and 47 HC via RT-qPCR. Besides, correlation studies with clinical variables were also examined. What’s more, we performed bioinformatics analysis to predict the potential role of hsa_circ_0140271. Results PBMC expression of hsa_circ_0140271 of female RA was significantly higher than that of female HC, and it was positively correlated with antistreptolysin (ASO). Furthermore, the receiver operating characteristic (ROC) curve indicated that hsa_circ_0140271 could distinguish female RA from female HC and female patients with ankylosing spondylitis (AS) or osteoarthritis (OA). Besides, the combined diagnosis anti-cyclic citrullinated peptide (Anti-CCP) + hsa_circ_0140271 could improve diagnostic accuracy with an area under the curve (AUC) of 0.818 to compared with Anti-CCP. Furthermore, KEGG pathway enrichment analysis indicated hsa_circ_0140271 may act as microRNA sponge and participate in fatty acid metabolism pathways. Conclusion Hsa_circ_0140271 was likely to be used as a promising diagnostic biomarker for female RA; it may act as microRNA sponge to regulate fatty acid metabolism pathways in RA.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Medical Science and Technology planning Project of Zhuhai, China

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3