Second-generation bone cement-injectable cannulated pedicle screws for osteoporosis: biomechanical and finite element analyses

Author:

Li Congcan,Song Lei,Xiao Jun,Wu Wenwen,Jiang Yifan,Zhou Rui,Dai Fei

Abstract

Abstract Background Biomechanical and finite element analyses were performed to investigate the efficacy of second-generation bone cement-injectable cannulated pedicle screws (CICPS) in osteoporosis. Methods This study used the biomechanical test module of polyurethane to simulate osteoporotic cancellous bone. Polymethylmethacrylate (PMMA) bone cement was used to anchor the pedicle screws in the module. The specimens were divided into two groups for the mechanical tests: the experimental group (second-generation CICPS) and control group (first-generation CICPS). Safety was evaluated using maximum shear force, static bending, and dynamic bending tests. Biomechanical stability evaluations included the maximum axial pullout force and rotary torque tests. X-ray imaging and computed tomography were used to evaluate the distribution of bone cement 24 h after PMMA injection, and stress distribution at the screw fracture and screw–cement–bone interface was assessed using finite element analysis. Results Mechanical testing revealed that the experimental group (349.8 ± 28.6 N) had a higher maximum axial pullout force than the control group (277.3 ± 8.6 N; P < 0.05). The bending moments of the experimental group (128.5 ± 9.08 N) were comparable to those of the control group (113.4 ± 20.9 N; P > 0.05). The screw-in and spin-out torques of the experimental group were higher than those of the control group (spin-in, 0.793 ± 0.015 vs. 0.577 ± 0.062 N, P < 0.01; spin-out, 0.764 ± 0.027 vs. 0.612 ± 0.049 N, P < 0.01). Bone cement was mainly distributed at the front three-fifths of the screw in both groups, but the distribution was more uniform in the experimental group than in the control group. After pullout, the bone cement was closely connected to the screw, without loosening or fragmentation. In the finite element analysis, stress on the second-generation CICPS was concentrated at the proximal screw outlet, whereas stress on the first-generation CICPS was concentrated at the screw neck, and the screw–bone cement–bone interface stress of the experimental group was smaller than that of the control group. Conclusion These findings suggest that second-generation CICPS have higher safety and stability than first-generation CICPS and may be a superior choice for the treatment of osteoporosis.

Funder

New clinical technology of Army Medical University

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3