Automatic assessment of knee osteoarthritis severity in portable devices based on deep learning

Author:

Yang Jianfeng,Ji Quanbo,Ni Ming,Zhang Guoqiang,Wang Yan

Abstract

Abstract Background For knee osteoarthritis, the commonly used radiology severity criteria Kellgren–Lawrence lead to variability among surgeons. Most existing diagnosis models require preprocessed radiographs and specific equipment. Methods All enrolled patients diagnosed with KOA who met the criteria were obtained from **** Hospital. This study included 2579 images shot from posterior–anterior X-rays of 2,378 patients. We used RefineDet to train and validate this deep learning-based diagnostic model. After developing the model, 823 images of 697 patients were enrolled as the test set. The whole test set was assessed by up to 5 surgeons and this diagnostic model. To evaluate the model’s performance we compared the results of the model with the KOA severity diagnoses of surgeons based on K-L scales. Results Compared to the diagnoses of surgeons, the model achieved an overall accuracy of 0.977. Its sensitivity (recall) for K-L 0 to 4 was 1.0, 0.972, 0.979, 0.983 and 0.989, respectively; for these diagnoses, the specificity of this model was 0.992, 0.997, 0.994, 0.991 and 0.995. The precision and F1-score were 0.5 and 0.667 for K-L 0, 0.914 and 0.930 for K-L 1, 0.978 and 0.971 for K-L 2, 0.981 and 0.974 for K-L 3, and 0.988 and 0.985 for K-L 4, respectively. All K-L scales perform AUC > 0.90. The quadratic weighted Kappa coefficient between the diagnostic model and surgeons was 0.815 (P < 0.01, 95% CI 0.727–0.903). The performance of the model is comparable to the clinical diagnosis of KOA. This model improved the efficiency and avoided cumbersome image preprocessing. Conclusion The deep learning-based diagnostic model can be used to assess the severity of KOA in portable devices according to the Kellgren–Lawrence scale. On the premise of improving diagnostic efficiency, the results are highly reliable and reproducible.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3