miR-181a-5p targets DDX3X to inhibit the progression of osteoarthritis via NF-ΚB signaling pathway

Author:

Zhao Peng,Ma Guobin,Ma Lintong

Abstract

AbstractOsteoarthritis (OA) is the most common age-related joint disease, characterized by chronic inflammation, progressive articular cartilage destruction and subchondral osteosclerosis. More and more evidence showed that microRNAs (miRNAs) play a key role in various diseases, but the specific mechanism of miRNAs in OA is not clear. The purpose of this study was to investigate the expression level and role of miR-181a-5p in OA and its related mechanism. Here we identified the key gene DEAD-box RNA helicase 3X (DDX3X) in the OA dataset by bioinformatics analysis. At the same time, miRNAs targeting DDX3X were screened, and miR-181a-5p was selected as the next research object. Then we used different concentrations of interleukin-1 beta (IL-1β)-induced in vitro model of arthritis, and found that IL-1β can stimulate cells to release nitric oxide. The expression levels of miR-181a-5p and DDX3X in mouse chondrocyte cell line ATDC5 induced by IL-1β at a concentration of 10ug/mL were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). IL-1β induced a decrease in the expression of miR-181a-5p and an increase in the expression of DDX3X in ATDC5 cells. mimic miR-181a-5p or inhibitor miR-181a-5p were transfected into ATDC5 cells, and the levels of inflammatory mediators in the cells were detected by enzyme-linked immunosorbent assay, and the results showed that miR-181a-5p could reduce the release of tumor necrosis factor-α, IL-1β, IL-6 and inducible nitric oxide nitric oxide synthase in a cellular model of arthritis. Luciferase reporter assays confirmed that the miR-181a-5p binding site was in the DDX3X gene 3′-untranslated region (3′-UTR), and DDX3X was negatively regulated by miR-181a-5p. Rescue assays confirmed that miR-181a-5p reduced the expression of DDX3X by targeting the 3′-UTR region of DDX3X, thereby reducing the release of inflammatory factors. Finally, in this paper, western blot was used to detect the mechanism of miR-181a-5p regulating OA. The results showed that interfering with the expression of miR-181a-5p could up-regulate the expression of DDX3X protein, increase the expression of nuclear factor- kappaB (NF-κB) related proteins, and reduce the inflammatory response of OA, thereby increasing the secretion of the matrix proteinases MMP-3 and MMP-13. Taken together, the results of the study suggested that miR-181a-5p may be a promising therapeutic target for the treatment of human OA.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3