Author:
Wang Peng,Liu Yang,Zhou Zhong
Abstract
Abstract
Background
With potential of deep learning in musculoskeletal image interpretation being explored, this paper focuses on the common site of rotator cuff tears, the supraspinatus. It aims to propose and validate a deep learning model to automatically extract the supraspinatus, verifying its superiority through comparison with several classical image segmentation models.
Method
Imaging data were retrospectively collected from 60 patients who underwent inpatient treatment for rotator cuff tears at a hospital between March 2021 and May 2023. A dataset of the supraspinatus from MRI was constructed after collecting, filtering, and manually annotating at the pixel level. This paper proposes a novel A-DAsppUnet network that can automatically extract the supraspinatus after training and optimization. The analysis of model performance is based on three evaluation metrics: precision, intersection over union, and Dice coefficient.
Results
The experimental results demonstrate that the precision, intersection over union, and Dice coefficients of the proposed model are 99.20%, 83.38%, and 90.94%, respectively. Furthermore, the proposed model exhibited significant advantages over the compared models.
Conclusion
The designed model in this paper accurately extracts the supraspinatus from MRI, and the extraction results are complete and continuous with clear boundaries. The feasibility of using deep learning methods for musculoskeletal extraction and assisting in clinical decision-making was verified. This research holds practical significance and application value in the field of utilizing artificial intelligence for assisting medical decision-making.
Funder
Jiangsu Graduate Practice Innovation Plan
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献