Supraspinatus extraction from MRI based on attention-dense spatial pyramid UNet network

Author:

Wang Peng,Liu Yang,Zhou Zhong

Abstract

Abstract Background With potential of deep learning in musculoskeletal image interpretation being explored, this paper focuses on the common site of rotator cuff tears, the supraspinatus. It aims to propose and validate a deep learning model to automatically extract the supraspinatus, verifying its superiority through comparison with several classical image segmentation models. Method Imaging data were retrospectively collected from 60 patients who underwent inpatient treatment for rotator cuff tears at a hospital between March 2021 and May 2023. A dataset of the supraspinatus from MRI was constructed after collecting, filtering, and manually annotating at the pixel level. This paper proposes a novel A-DAsppUnet network that can automatically extract the supraspinatus after training and optimization. The analysis of model performance is based on three evaluation metrics: precision, intersection over union, and Dice coefficient. Results The experimental results demonstrate that the precision, intersection over union, and Dice coefficients of the proposed model are 99.20%, 83.38%, and 90.94%, respectively. Furthermore, the proposed model exhibited significant advantages over the compared models. Conclusion The designed model in this paper accurately extracts the supraspinatus from MRI, and the extraction results are complete and continuous with clear boundaries. The feasibility of using deep learning methods for musculoskeletal extraction and assisting in clinical decision-making was verified. This research holds practical significance and application value in the field of utilizing artificial intelligence for assisting medical decision-making.

Funder

Jiangsu Graduate Practice Innovation Plan

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MRI for the diagnosis of limb girdle muscular dystrophies;Current Opinion in Neurology;2024-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3