Mechanism exploration of Osteoking in the treatment of lumbar disc herniation based on network pharmacology and molecular docking

Author:

Luo XinleiORCID,Liu Jingjing,Wang Xiaoxi,Chen Qiaojun,Lei Yanfa,He Zewei,Wang Xiaowei,Ye Yan,Na Qiang,Lao Changtao,Yang Zhengchang,Jiang Jun

Abstract

Abstract Objective Lumbar disc herniation (LDH) is a common spinal surgical disease. Low back and leg pain caused by LDH is the main factor leading to functional disability, which has caused a serious burden to patients and society. Osteoking can delay the progression of osteoporosis and osteoarthritis, and even has a significant effect on the prevention of deep vein thrombosis after fracture surgery. In recent years, it has been gradually used in the treatment of LDH and has received significant results. However, the underlying mechanism remains unclear. The aim of this study was to predict the mechanism of Osteoking in the treatment of LDH through network pharmacology and verify it by molecular docking method. Methods The TCMSP database was used to collect the relevant active components and targets of Osteoking, while the GeneCards, OMIM and DisGeNET databases were utilized to collect the relevant disease targets of LDH. The Venny 2.1.0 software was employed to obtain the intersecting gene targets of Osteoking and LDH. PPI network construction and core target selection were performed using Cytoscape 3.9.0 software. The Metascape database was used for GO and KEGG enrichment analysis of the relevant targets. Finally, molecular docking was conducted using AutoDock software. Results The study identified 116 potential targets and 26 core targets for the treatment of LDH with Osteoking. Pathways in cancer, Alzheimer's disease, microRNAs in cancer and the IL-17 signalling pathway were among the main involved signalling pathways. Molecular docking results demonstrated that the key targets AKT1, IL-6, ALB, TNF and IL-1β exhibited relatively stable binding activities with the main active components of Osteoking. Conclusions Osteoking can alleviate the symptoms of lumbar disc herniation through the modulation of multiple targets and signalling pathways.

Funder

Qiang Na

Changtao Lao

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3