Author:
Zhang Yuqi,Min Li,Lu Minxun,Wang Jie,Wang Yitian,Luo Yi,Zhou Yong,Duan Hong,Tu Chongqi
Abstract
Abstract
Background
This study is to describe the detailed design and surgical techniques of three-dimensional (3D)-printed customized prosthesis for pubic bone defect.
Patients and methods
Five patients under type III resections were included in this study. Based on radiography data, 3D pelvic model was established and virtual surgery was simulated. Detailed anatomy data were measured including the size and arc of normal pubis, the size of residual bone in acetabular side. Different fixation ways were considered according to shape of defect. After features modification and porous structure design, prostheses were fabricated. The osteotomy guides and plastic models were used during surgery.
Result
Of 5 cases, the prostheses consist of the type with stem (3, 60%) and the type without stem (2, 40%). Mean follow-up period was 13.6 months (range, 8-24 months). For partial pubis removed cases, the mean length and width of narrowest part of normal superior pubis were 13.19 mm (range, 12.51-14.12 mm) and 7.80 mm (range, 7.18-8.26 mm) respectively. Mean arc of normal pubis was 2.71 rad (range, 2.66-2.73 rad). For the entire pubis resection cases, the mean diameter of narrowest parts and length of normal superior pubis were 11.52 mm (range, 11.13-11.91 mm) and 64.78 mm (range, 63.46-66.09 mm), while the diameter of narrowest part and length of normal inferior pubis were 7.37 mm (range, 7.20-7.54 mm) and 86.43 mm (range, 84.28-88.57 mm). Mean length and arc of intramedullary stem was 20 mm (range, 18-21 mm) and 2.7 rad. Mean screw holes number was 6.3 (range, 6-7) while ultimate screws number in surgeries was 4.3 (range, 4-5). Porous structure with 600-μm-pore size and 70% porosity was applied in parts of contact with residual bone.
Conclusion
3D-printed customized prostheses could be a feasible option to reconstruct bone defect after type III resection. The design of 3D-printed customized prostheses is a multi-step process which is based on strict anatomic measurement.
Funder
National Key Research and Development Program of China
Chengdu science and technology project
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Surgery
Reference23 articles.
1. Enneking WF, Dunham W, Gebhardt MC, Malawar M, Pritchard DJ. A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin Orthop Relat Res. 1993;286:241–6.
2. Angelini A, Drago G, Trovarelli G, Calabro T, Ruggieri P. Infection after surgical resection for pelvic bone tumors: an analysis of 270 patients from one institution. Clin Orthop Relat Res. 2014;472(1):349–59.
3. Chao AH, Neimanis SA, Chang DW, Lewis VO, Hanasono MM. Reconstruction after internal hemipelvectomy: outcomes and reconstructive algorithm. Ann Plast Surg. 2015;74(3):342–9.
4. Sherman CE, O’Connor MI, Sim FH. Survival, local recurrence, and function after pelvic limb salvage at 23 to 38 years of followup. Clin Orthop Relat Res. 2012;470(3):712–27.
5. Hugate R Jr, Sim FH. Pelvic reconstruction techniques. Orthop Clin North Am. 2006;37(1):85–97.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献