Utility of a novel integrated deep convolutional neural network for the segmentation of hip joint from computed tomography images in the preoperative planning of total hip arthroplasty

Author:

Wu Dong,Zhi Xin,Liu Xingyu,Zhang Yiling,Chai WeiORCID

Abstract

Abstract Purpose Preoperative three-dimensional planning is important for total hip arthroplasty. To simulate the placement of joint implants on computed tomography (CT), pelvis and femur must be segmented. Accurate and rapid segmentation of the hip joint is challenging. This study aimed to develop a novel deep learning network, named Changmugu Net (CMG Net), which could achieve accurate segmentation of the femur and pelvis. Methods The overall deep neural network architecture of CMG Net employed three interrelated modules. CMG Net included the 2D U-net to separate the bony and soft tissues. The modular hierarchy method was used for the main femur segmentation to achieve better performance. A layer classifier was adopted to localise femur layers among a series of CT scan images. The first module was a modified 2D U-net, which separated bony and soft tissues; it provided intermediate supervision for the main femur segmentation. The second module was the main femur segmentation, which was used to distinguish the femur from the acetabulum. The third module was the layer classifier, which served as a post-processor for the second module. Results There was a much greater overlap in accuracy results with the “gold standard” segmentation than with competing networks. The dice overlap coefficient was 93.55% ± 5.57%; the mean surface distance was 1.34 ± 0.24 mm, and the Hausdorff distance was 4.19 ± 1.04 mm in the normal and diseased hips, which indicated greater accuracy than the other four competing networks. Moreover, the mean segmentation time of CMG Net was 25.87 ± 2.73 s, which was shorter than the times of the other four networks. Conclusions The prominent segmentation accuracy and run-time of CMG Net suggest that it is a reliable method for clinicians to observe anatomical structures of the hip joints, even in severely diseased cases.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

General Hospital of People’s Liberation Army

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3