Mechanical properties of an elastically deformable cervical spine implant

Author:

Abudouaini Haimiti,Wu Tingkui,Meng Yang,Wang Beiyu,Liu Hao

Abstract

AbstractAnterior cervical surgery is widely accepted and time-tested surgical procedure for treating cervical radiculopathy and myelopathy. However, there is concern about the high adjacent segment degeneration rate and implant subsidence after the surgery using the traditional polyetheretherketone cage. Thus, we creatively designed a polyurethane cervical implant that can continuous load-sharing through elastic deformation and decrease postoperative stress concentration at adjacent segments. In this study, the design rationality and safety of this novel implant was evaluated based on several mechanical parameters including compression test, creeping test, push-out test and subsidence test. The results showed that the novel cervical implant remained intact under the compressive axial load of 8000 N and continues to maintained the elastic deformation phase. The minimum push-out load of the implant was 181.17 N, which was significantly higher than the maximum compressive shear load of 20 N experienced by a normal human cervical intervertebral disc. Besides, the creep recovery behaviour of the implant closely resembled what has been reported for natural intervertebral discs and clinically applied cervical devices in literature. Under the load of simulating daily activities of the cervical spine, the implant longitudinal displacement was only 0.54 mm. In conclusion, this study showed that the current design of the elastically deformable implant was reasonable and stable to fulfil the mechanical requirements of a cervical prosthesis under physiological loads. After a more comprehensive understanding of bone formation and stress distribution after implantation, this cervical implant is promising to be applied to certain patients in clinical practice.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3