Development and validation of a nomogram to predict the risk of surgical site infection within 1 month after transforaminal lumbar interbody fusion

Author:

Lian Jiashu,Wang Yu,Yan Xin,Xu Guoting,Jia Mengxian,Yang Jiali,Ying Jinwei,Teng Honglin

Abstract

Abstract Objective Surgical site infection (SSI), a common serious complication within 1 month after transforaminal lumbar interbody fusion (TLIF), usually leads to poor prognosis and even death. The objective of this study is to investigate the factors related to SSI within 1 month after TLIF. We have developed a dynamic nomogram to change treatment or prevent infection based on accurate predictions. Materials and methods We retrospectively analyzed 383 patients who received TLIF at our institution from January 1, 2019, to June 30, 2022. The outcome variable in the current study was the occurrence of SSI within 1 month after surgery. Univariate logistic regression analysis was first performed to assess risk factors for SSI within 1 month after surgery, followed by inclusion of significant variables at P < 0.05 in multivariate logistic regression analysis. The independent risk variables were subsequently utilized to build a nomogram model. The consistency index (C-index), calibration curve and receiver operating characteristic curve were used to evaluate the performance of the model. And the decision curve analysis (DCA) was used to analyze the clinical value of the nomogram. Results The multivariate logistic regression models further screened for three independent influences on the occurrence of SSI after TLIF, including lumbar paraspinal (multifidus and erector spinae) muscles (LPM) fat infiltration, diabetes and surgery duration. Based on the three independent factors, a nomogram prediction model was built. The area under the curve for the nomogram including these predictors was 0.929 in both the training and validation samples. Both the training and validation samples had high levels of agreement on the calibration curves, and the nomograms C-index was 0.929 and 0.955, respectively. DCA showed that if the threshold probability was less than 0.74, it was beneficial to use this nomograph to predict the risk of SSI after TLIF. In addition, the nomogram was converted to a web-based calculator that provides a graphical representation of the probability of SSI occurring within 1 month after TLIF. Conclusion A nomogram including LPM fat infiltration, surgery duration and diabetes is a promising model for predicting the risk of SSI within 1 month after TLIF. This nomogram assists clinicians in stratifying patients, hence boosting decision-making based on evidence and personalizing the best appropriate treatment.

Funder

the National Natural Science Foundation of China

the Zhejiang Provincial Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3