Novel screw-cable integrated system(SCIS) for minimally invasive treatment of patella transverse fractures: a finite element analysis

Author:

Liu Songyang,Liu Shen,Gu Feng,Wei Xing,Liang Yonghui

Abstract

Abstract Background The most recommended method for treating transverse patella fractures is modified tension band wiring (MTBW). However, the optimal instrument for use with MTBW is still undetermined. Hence, we aimed to design a novel screw-cable integrated system (SCIS) and compare its biomechanical characteristics with Kirschner-wire, SCIS, and Cable-Pin systems in treating transverse patellar fracture. Methods A finite-element (FE) model of transverse patella fracture was created. The fracture model was fixed with either K-wire, SCIS, or Cable-pin. Different tension force loading (400 N and 800 N), direction(0° and 45°), and screw or K-wire depth(5 mm and 10 mm) were set. The maximum displacement of the fragment and maximum gap opening were measured by using FE analysis. Results Compared with the K-wire and Cable-pin system, SCIS increased the stability of the fractured patella by reducing fragment displacement and gap opening. Under 400 N loading in the direction 45°, SCIS with screw placing at 5-mm depth reduced the maximum fragment displacement (0.43 mm) by 49.62% and 26%, respectively, compared with the K-wire (0.22 mm) and Cable-pin (0. 22 mm) group. Meanwhile, the gap opening in SCIS (0.05 mm) was reduced by 83% and 59.8% (0.05 to 0.18) compared with the K-wire (0.30 mm) and Cable-pin (0.18 mm) group. Conclusion SCIS demonstrated improved biomechanical stability for treating transverse patellar fractures compared to MTBW with Kirschner wire and the Cable-Pin system. Finite element analysis showed SCIS substantially reduced fracture fragment displacement and gap opening under various loading conditions.

Funder

Aerospace Center Hospital Foundation

Beijing Municipal Science and Technology Commission, Adminitrative Commission of Zhongguancun Science Park

Beijing Municipal Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3