Is double-strut fibula ankle arthrodesis a reliable reconstruction for bone defect after distal tibia tumor resection?—a finite element study based on promising clinical outcomes

Author:

Zhao Zhiqing,Yan TaiqiangORCID,Guo Wei,Yang Rongli,Tang Xiaodong

Abstract

Abstract Background There are different surgical methods for primary malignant tumor located at distal tibia. Previous studies have reported that double-strut fibula ankle arthrodesis is an alternative option. The purpose of this study was to investigate the biomechanical effect of double-strut fibula ankle arthrodesis by finite element analysis (FEA). Methods Computer-aided design software was used to establish three-dimension models. Three different models were constructed: normal tibia-fibula-talus complex (model A), double-strut fibula ankle arthrodesis (model B), and reconstruction by ipsilateral fibula (model C). We used FEA to evaluate and compare the biomechanical characteristics of these constructs. Simulated load of 600 N was applied to the tibial plateau to simulate balanced single-foot standing. Output results representing the model von Mises stress and displacement of the components were analyzed. Results Construct stiffness was increased when the internal plate fixation was used. For axial load, model B (1460.5 N/mm) was stiffer than the construct of model A (524.8 N/mm), and model C (636.6 N/mm), indicating model B was more stable. Maximum stress on the fibular graft occurred on the proximal end. The von Mises stress and stress distribution of fibular graft in model B (71.4 MPa) and model C (67.8 MPa) were similar. In model B, the ipsilateral fibula in model B has a higher value of stress (16.1 MPa) than that in model A (0.5 MPa), indicating the ipsilateral fibula shared load after fusion with talus. Conclusions Our computational findings suggest that double-strut fibula ankle arthrodesis is an acceptable construct for distal tibia defect and the ipsilateral fibula shares load after fusion with talus.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3