Femoral periprosthetic fracture treatment using the Ortho-Bridge System: a biomechanical study

Author:

Long Yuntao,Qi Yubin,Zuo Guilai,Zhang Qingjie,Liu Zhenlin,Wang WenORCID

Abstract

Abstract Background We undertook a comparative biomechanical study of type B1 fractures around femoral prostheses following cemented hip arthroplasty using the Ortho-Bridge System (OBS) and a locking compression plate/locking attachment plate structure (LCP + LAP). We aimed to investigate the biomechanical characteristics and advantages of the OBS compared with LCP + LAP when treating this fracture type. Methods An OBS fixation model was designed based on OBS and LCP + LAP fixation characteristics. The LCP + LAP combination (Group A) and three different OBS combinations (Groups B, C, and D) were used to fix a B1 fracture model with a femoral periprosthetic fracture. Axial compression and torsion experiments were then performed using simple and comminuted fracture models. The axial compression failure experiment was carried out, and the model stiffness during axial compression, torsion angle in torsion test, and vertical load in the final failure test were collected. Results When simulating simple oblique fractures, no significant difference was found among the four groups in terms of stiffness in the axial compression experiment (P = 0.257). The torsion angle of the LCP + LAP system was significantly higher compared with the OBS system (P < 0.05). When simulating a comminuted fracture, the experimental data for axial compression showed that the rigidity measurements of the three combinations of the OBS system were higher compared with the LCP + LAP system (P = 0.000) and that the torsion angles of three combinations of the OBS system were smaller compared with the LCP + LAP system (P < 0.05). In the axial compression failure test, the fixed failure mode of the LCP + LAP system was the destruction of the contact cortex at the fracture site, whereas the failure modes in the three OBS combinations involved fracture around the screws above the osteotomy and destruction of the contact cortex at the fracture site. Conclusions The findings revealed that the OBS produced superior biomechanical outcomes compared with LCP + LAP, especially for the bridging two-rod dual cortex. According to the performance observed after model axial compression destruction, the OBS was fixed and provided greater stress dispersion, which might make it more suitable for facilitating early functional movement and avoiding the failure of internal fixation.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3