Identification of a potential gene target for osteoarthritis based on bioinformatics analyses

Author:

Duan Zhi-xi,Li Yu-shengORCID,Tu Chao,Xie Peng,Li Yi-han,Qi Lin,Li Zhi-hong

Abstract

Abstract Background Osteoarthritis (OA) is the most common chronic joint disease worldwide. It is characterized by pain and limited mobility in the affected joints and may even cause disability. Effective clinical options for its prevention and treatment are still unavailable. This study aimed to identify differences in gene signatures between tissue samples from OA and normal knee joints and to explore potential gene targets for OA. Methods Five gene datasets, namely GSE55457, GSE55235, GSE12021, GSE10575, and GSE1919, were selected from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using the R programming software. The functions of these DEGs were analyzed, and a protein–protein interaction (PPI) network was constructed. Subsequently, the most relevant biomarker genes were screened using a receiver operating characteristic (ROC) curve analysis. Finally, the expression of the protein encoded by the core gene PTHLH was evaluated in clinical samples. Results Eleven upregulated and 9 downregulated DEGs were shared between the five gene expression datasets. Based on the PPI network and the ROC curves of upregulated genes, PTHLH was identified as the most relevant gene for OA and was selected for further validation. Immunohistochemistry confirmed significantly higher PTHLH expression in OA tissues than in normal tissues. Moreover, similar PTHLH levels were detected in the plasma and knee synovial fluid of OA patients. Conclusion The bioinformatics analysis and preliminary experimental verification performed in this study identified PTHLH as a potential target for the treatment of OA.

Funder

Fundamental Research Funds for Central Universities of the Central South University

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Hunan Provincial Science and Technology Department

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3