Method for generating transparent porcine tibia showing the intraosseous artery

Author:

Wang Hongyu,Wan Jiaming,Geng Kailong,Zhang Xiangnan,Hou Ruixing

Abstract

Abstract Background The occurrence of nonunion after tibial fracture surgery is mainly related to insufficient blood supply. Therefore, anatomical study of the internal and external tibial artery is very important, but there is no good method for displaying the intraosseous artery clearly and intuitively. This hinders the protection and reconstruction of it by surgeons, as well as the development of new instruments and techniques by researchers. Objective To develop a transparent specimen that could clearly display the intraosseous artery of the tibia. Methods In 10 isolated pig calves with popliteal vessels, the popliteal artery was exposed and a tube was placed. A casting agent was then injected at constant pressure, and the tissue around the blood vessel was preliminarily removed after solidification. The perivascular tissue and periosteum were further removed via alkali corrosion, and the tibia was fixed with an external fixator to protect the non-corrosive areas at both ends. Alternate acid corrosion and flushing were then applied until the intraosseous artery was completely exposed. The distribution and branches of intraosseous nutrient arteries were observed with the naked eye and via microscopy. Three-dimensional (3D) scanning and 3D printing filling techniques were used to make transparent tibia specimens with preservation of intraosseous arteries. Results A cast specimen of the intraosseous artery of porcine tibia was successfully generated via epoxy resin perfusion combined with acid–alkali etching, and the intraosseous artery was clearly visible. The 3D printing and filling technique successfully produced a transparent tibia specimen with preservation of internal bone arteries, and accurately restored the external shape of the tibia. The foramen of the nutrient artery appeared near the middle upper third of the lateral edge of the tibia. After entering the tibia, the nutrient artery proceeded forward, medial, and downward for a certain distance, twisted and turned near the midpoint of the medullary cavity, and divided into the ascending and descending branches. After going in the opposite direction for a distance, the ascending trunk sent out 2–3 branches, and the descending trunk sent out 2–3 branches. Conclusion The cast specimen of pig intraosseous artery generated via the above-described perfusion corrosion method provides methodological guidance for the study of anatomical characteristics of the intraosseous artery, and a theoretical basis for the study of new methods of internal fixation and reconstruction of the blood supply of the lower tibia.

Funder

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Reference29 articles.

1. Vander Voort W, Davison J, Hendrickson N, et al. Sarcopenia is associated with nonunion of open tibia and ankle fractures. Iowa Orthop J. 2020;40(1):153–8.

2. Leighton R, Watson JT, Giannoudis P, et al. Healing of fracture nonunions treated with low-intensity pulsed ultrasound (LIPUS): a systematic review and meta-analysis. Injury. 2017;48(7):1339–47.

3. Nicholson JA, Makaram N, Simpson A, et al. Fracture nonunion in long bones: a literature review of risk factors and surgical management. Injury. 2021;52(2):3–11.

4. Trueta J. Blood supply and the rate of healing of tibial fractures. Clin Orthop Relat Res. 1974;105:11–26.

5. Dickson KF, Katzman S, Paiement G. The importance of the blood supply in the healing of tibial fractures. Contemp Orthop. 1995;30(6):489–93.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3