MicroRNA-877-5p promotes osteoblast differentiation by targeting EIF4G2 expression

Author:

Shen YingChao,Zhang Yang,Wang Qiang,Jiang Bo,Jiang XiaoWei,Luo Bin

Abstract

AbstractStimulating bone formation potentially suggests therapeutics for orthopedic diseases including osteoporosis and osteoarthritis. Osteoblasts are key to bone remodeling because they act as the only bone-forming cells. miR-877-5p has a chondrocyte-improving function in osteoarthritis, but its effect on osteoblast differentiation is unknown. Here, miR-877-5p-mediated osteoblast differentiation was studied. Real-time reverse transcriptase-polymerase chain reaction was performed to measure miR-877-5p expression during the osteogenic differentiation of MC3T3-E1 cells. Osteoblast markers, including alkaline phosphatase (ALP), collagen type I a1 chain, and osteopontin, were measured and detected by alizarin red staining and ALP staining. Potential targets of miR-877-5p were predicted from three different algorithms: starBase (http://starbase.sysu.edu.cn/), PITA (http://genie.weizmann.ac.il/pubs/mir07/mir07_data.html), and miRanda (http://www.microrna.org/microrna/home.do). It was further verified by dual luciferase reporter gene assay. The experimental results found that miR-877-5p was upregulated during the osteogenic differentiation of MC3T3-E1 cells. Overexpression of miR-877-5p promoted osteogenic differentiation, which was characterized by increased cell mineralization, ALP activity, and osteogenesis-related gene expression. Knockdown of miR-877-5p produced the opposite result. Dual luciferase reporter gene assay showed that miR-877-5p directly targeted eukaryotic translation initiation factor 4γ2 (EIF4G2). Overexpression of EIF4G2 inhibited osteogenic differentiation and reversed the promoting effect of overexpression of miR-135-5p on osteogenic differentiation. These results indicate that miR-877-5p might have a therapeutic application related to its promotion of bone formation through targeting EIF4G2.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3