Application of machine learning-based multi-sequence MRI radiomics in diagnosing anterior cruciate ligament tears

Author:

Cheng Qi,Lin Haoran,Zhao Jie,Lu Xiao,Wang Qiang

Abstract

Abstract Objective To compare the diagnostic power among various machine learning algorithms utilizing multi-sequence magnetic resonance imaging (MRI) radiomics in detecting anterior cruciate ligament (ACL) tears. Additionally, this research aimed to create and validate the optimal diagnostic model. Methods In this retrospective analysis, 526 patients were included, comprising 178 individuals with ACL tears and 348 with a normal ACL. Radiomics features were derived from multi-sequence MRI scans, encompassing T1-weighted imaging and proton density (PD)-weighted imaging. The process of selecting the most reliable radiomics features involved using interclass correlation coefficient (ICC) testing, t tests, and the least absolute shrinkage and selection operator (LASSO) technique. After the feature selection process, five machine learning classifiers were created. These classifiers comprised logistic regression (LR), support vector machine (SVM), K-nearest neighbors (KNN), light gradient boosting machine (LightGBM), and multilayer perceptron (MLP). A thorough performance evaluation was carried out, utilizing diverse metrics like the area under the receiver operating characteristic curve (ROC), specificity, accuracy, sensitivity positive predictive value, and negative predictive value. The classifier exhibiting the best performance was chosen. Subsequently, three models were developed: the PD model, the T1 model, and the combined model, all based on the optimal classifier. The diagnostic performance of these models was assessed by employing AUC values, calibration curves, and decision curve analysis. Results Out of 2032 features, 48 features were selected. The SVM-based multi-sequence radiomics outperformed all others, achieving AUC values of 0.973 and 0.927, sensitivities of 0.933 and 0.857, and specificities of 0.930 and 0.829, in the training and validation cohorts, respectively. Conclusion The multi-sequence MRI radiomics model, which is based on machine learning, exhibits exceptional performance in diagnosing ACL tears. It provides valuable insights crucial for the diagnosis and treatment of knee joint injuries, serving as an accurate and objective supplementary diagnostic tool for clinical practitioners.

Funder

Major Project of Scientific Research Project of Provincial Education Department of Anhui Province

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3