TSG-6 inhibits IL-1β-induced inflammatory responses and extracellular matrix degradation in nucleus pulposus cells by activating the PI3K/Akt signaling pathway

Author:

Wu Bing,Guo Xiaojin,Yan Xiujie,Tian Zikai,Jiang Wei,He Xin

Abstract

Abstract Purpose Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6), a secreted protein associated with inflammation, is believed to possess momentous and multiple anti-inflammatory and tissue-protective properties. However, the role and potential mechanism of TSG-6 in cervical disk degeneration (CDD) are still not clear. Hence, we aimed to explore the effect of TSG-6 on CDD. Methods Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) or enzyme-linked immunosorbent assay was applied to detect the expression level of TSG-6 and IL-1β in normal and degenerated nucleus pulposus (NP) tissues. Then, qRT-PCR and western blot were adopted to test the TSG-6 protein expression after IL-1β treatment (10 ng/mL) in human NP cells (HNPCs). After over-expressing TSG-6, qRT-PCR was also utilized to evaluate the expression of TNF-α, IL-8, and IL-6 and the synthesis of sulfated glycosaminoglycans (sGAGs), western blot to check the expression of extracellular matrix (ECM) proteins [collagen II, aggrecan, and matrix metalloproteinase-3 (MMP-3)], pain-related molecules (CGRP, calcitonin gene-related peptide; NGF, nerve growth factor; SP, substance P), and PI3K/Akt signaling pathway-related proteins. Results Briefly speaking, TSG-6 and IL-1β expression levels were significantly increased in CDD patient tissues; and IL-1β treatment could significantly increase TSG-6 expression in HNPCs. Further research revealed that, in addition to greatly promoting sGAGs synthesis, TSG-6 over-expression also inhibited TNF-α, IL-8, and IL-6 expression and ECM degradation in IL-1β-induced HNPCs. (The collagen II and aggrecan expression was up-regulated and MMP-3 expression was down-regulated.) Furthermore, over-expression of TSG-6 could decrease the levels of CGRP, NGF, and SP protein expression and activate the PI3K/Akt signaling pathway in IL-1β-treated HNPCs. Conclusion TSG-6 inhibits inflammatory responses, ECM degradation, and expression of pain-related molecules in IL-1β-induced HNPCs by activating the PI3K/Akt signaling pathway.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3