Abstract
Abstract
Background
A novel hemipelvic endoprosthesis with a sacral hook was introduced previously, and its clinical outcome with midterm follow-up showed decreased prosthesis-related complications, especially decreased rate of aseptic loosening. The aim of present study was to evaluate the role of a sacral hook in prosthesis stability and the biomechanical properties of this hemipelvic endoprosthesis.
Methods
A three-dimensional model of the postoperative pelvis was developed using computed tomography (CT) images. A force of 500 N was applied, and the distribution of stress and displacement was evaluated. Comparisons were performed to explore the role of the sacral hook in prosthesis stability. Prosthesis improvement was simulated to reduce unexpected breakage of the pubic connection plate.
Results
In the reconstructed hemipelvis, stress distributions were concentrated on the superior area of the acetabulum, sacral connection component, and sacral hook. A maximum stress of 250 MPa was observed at the root of the sacral connection component. The sacral hook reduced the maximum stress and displacement by 14.1% and 32.5%, respectively, when the prosthesis was well fixed and by 10.0% and 42.1%, respectively, when aseptic loosening occurred. Increasing the thickness of the pubic connection plate from 2 to 3.5 mm reduced the maximum stress by 32.0% and 15.8%, respectively.
Conclusion
A hemipelvic endoprosthesis with a sacral hook fulfills the biomechanical demands of the hemipelvis and is safe under static conditions. The sacral hook is important for prosthesis stability. Increasing the thickness of the pubic connection plate can reduce the maximum stress and risk of fatigue breakage.
Funder
Natural Science Foundation of Guangdong Province
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Surgery
Reference20 articles.
1. Muller PE, Durr HR, Wegener B, Pellengahr C, Refior HJ, Jansson V. Internal hemipelvectomy and reconstruction with a megaprosthesis. Int Orthop. 2002;26(2):76–9.
2. Witte D, Bernd L, Bruns J, Gosheger G, Hardes J, Hartwig E, Lehner B, Melcher I, Mutschler W, Schulte M, et al. Limb-salvage reconstruction with MUTARS hemipelvic endoprosthesis: a prospective multicenter study. Eur J Surg Oncol. 2009;35(12):1318–25.
3. Ji T, Guo W, Yang RL, Tang XD, Wang YF. Modular hemipelvic endoprosthesis reconstruction--experience in 100 patients with mid-term follow-up results. Eur J Surg Oncol. 2013;39(1):53–60.
4. Wang B, Xie X, Yin J, Zou C, Wang J, Huang G, Wang Y, Shen J. Reconstruction with modular hemipelvic endoprosthesis after pelvic tumor resection: a report of 50 consecutive cases. PLoS One. 2015;10(5):e0127263.
5. Enneking WF, Dunham W, Gebhardt MC, Malawar M, Pritchard DJ. A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin Orthop Relat Res. 1993;286:241–6.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献