Butterfly optimizer assisted Max–Min based multi-objective approach for optimal connection of DGs and optimal network reconfiguration of distribution networks

Author:

Thunuguntla Vinod Kumar,Injeti Satish KumarORCID

Abstract

AbstractCurrently, the electrical distribution system is experiencing challenges such as low system efficiency due to substantial real power losses, a poor voltage profile, and inadequate system loadability as a result of the tremendous increase in system load demand. Therefore, distribution system operators are searching for ways to improve system efficiency and loadability. Distributed Generation technology has attracted a lot of researchers’ interest in recent days because of its enormous technological advantages in dealing with the aforementioned issues. This work presents a Max–Min based multi-objective optimization approach for optimal connection of distributed generators (OCDG) in the presence of optimal distribution network reconfiguration (ODNR) to enhance the system loadability ($$\lambda_{{{\text{max}}}}$$ λ max ) and to reduce real power loss. Two scenarios are taken to achieve the proposed objectives. Scenario-1 deals with the enhancement of loss mitigation & system loadability. In scenario-2, to extract maximum benefits with less amount of real power injection by DGs into the system, DGs real power injection is taken as one of the objectives. Under each scenario, three cases are investigated. Case 1 and case 2 deal with single-objective optimization, whereas case 3 deals with multi-objective optimization. The butterfly Optimization (BO) technique is implemented for the optimization of proposed objectives. The proposed method is tested on 33 bus, 69 bus radial distribution test systems. To test the potential of the BO algorithm, the outcomes are contrasted with the suitable results that are accessible in the literature. From the outcomes, it was observed that real power loss of the system is reduced to (75–89)%, loadability enhanced to (94–121)% with the injection of 64% KVA by DGs into 33 & 69 bus systems.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3