MRDPGA: a multiple restart dynamic population genetic algorithm for scheduling road traffic

Author:

Zachariah Babangida,Misra SanjayORCID,Odion Philip O.,Isah Saidu R.

Abstract

AbstractA genetic algorithm is a biologically inspired stochastic approach to finding solutions to optimization problems. However, unlike its deterministic counterpart, it cannot guarantee a globally optimal solution since it may be trapped within a local optimum of the search space. Most researchers have focused on proposing new techniques for various parameters of genetic algorithms. That is a mutation, crossover, or selection algorithm. This research proposes a modification to the standard genetic algorithm, which may serve as a framework that can integrate any of these parameters for their contribution to the final solution of the genetic algorithm. The multiple restart dynamic population genetic algorithm (MRDPGA) proposed in this research was used in training the parameters of the adaptive neuro-fuzzy inference system (ANFIS) for scheduling road vehicular traffic flows. The results of training the ANFIS models based on the different clustering methods showed that the MRDPGA-based ANFIS controller performed better with the mean square error (MSE) of 0.299 and root mean square error (RMSE) of 0.547 in the training phase; and MSE of 0.272 and RMSE of 0.521 in the testing phase. Using the controllers for traffic flow scheduling, the results showed that the MRDPGA-trained controllers performed better in terms of average waiting time (AWT) minimization and total arrived vehicles (TAV). The best-performing controller achieved 50.40% AWT minimization and 21.44% TAV improvement. Analyzing the results using a one-tailed t-test for paired two-sample means showed that the MRDPGA algorithm had a significant impact on the controllers. Particularly the FCM controller, where (p = 0.0038) and (p = 0.0003) for AWT and TAV at a 95% confidence level. Thus, MRDPGA algorithms are recommended for further assessment in other optimization problems to ascertain their performance in those problem domains.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3