Voltage and frequency control of standalone wind-driven self-excited reluctance generator using switching capacitors

Author:

Sedky Joseph S.,Yassin Haitham M.ORCID,Hanafy H. H.,Ismail Farouk

Abstract

AbstractThis paper presents a methodology for voltage and frequency (V–f) control of a standalone wind-driven self-excited reluctance generator (WDSERG). The methodology is based on proposing two different compensation configurations using two switching capacitors (short-shunt and long-shunt compensation) for (V–f) control. The dynamic and steady-state performances of the two configurations are discussed under different operating conditions: wind speeds, load currents and power factors. This analysis is done by developing a complete dynamic model of WDSERG including the excitation capacitors and load. Therefore, complete equivalent circuits are proposed. The values of capacitors are controlled by adjusting the duty cycle of H-bridge circuits with PI controllers. To validate the proposed configurations and their dynamic models and equivalent circuits, simulation results for a 1.5-kW standalone WDSERG and experimental results for 0.2 kW reluctance generator driven by a DC motor, emulating the wind turbine, are carried out. The results show a significant enhancement in voltage and frequency regulation with the selected optimal capacitances for each configuration; however, short-shunt compensation is the preferred configuration as it controls the output voltage and frequency with minimum values of capacitances and minimum required duty variation.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3