RF performance evaluation of the nRF24L01+ based wireless water quality monitoring sensor node: Khartoum city propagation scenario

Author:

Abdelrahim Sami Omer Osman,Hassan Mohamed Zakria Mohamed,Salih Alzain Mohamed Suliman,Abdo-Alrahiem Amjed Abubaker Mohamed,Abdelgadir Mohamed Mayada

Abstract

AbstractRecently, and to cater to increased needs of Drinking Water Quality Monitoring (DWQM) and data management, there has been a growing interest in the marketplace as well as in the research community to develop advanced water quality monitoring systems utilizing modern information and communications technologies (ICT) such as wireless sensor networks (WSN) and Internet of Things (IoT). The application of the wireless-sensing paradigm is becoming a common trend in water quality monitoring systems. In fact, a growing body of the literature has focused on developing wireless sensing-enabled water quality monitoring systems. However, previous studies have not dealt with the radio performance evaluation of modern wireless water quality monitoring systems deployed in urban city scenarios. The present paper seeks to address the radio frequency (RF) performance evaluation for a developed modern wireless Drinking Water Quality Monitoring System (DWQMS) based on the commercial nRF24L01+ RF module. This research study is based on three city propagation scenarios as case studies. The obtained experimental data suggested that the nRF24L01+ module can provide relatively acceptable RF performance under less favorable and hostile city propagation environments.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3