An overview of inertia requirement in modern renewable energy sourced grid: challenges and way forward

Author:

Ayamolowo Oladimeji JosephORCID,Manditereza Patrick,Kusakana Kanzumba

Abstract

AbstractAs the world strives toward meeting the Paris agreement target of zero carbon emission by 2050, more renewable energy generators are now being integrated into the grid, this in turn is responsible for frequency instability challenges experienced in the new grid. The challenges associated with the modern power grid are identified in this research. In addition, a review on virtual inertial control strategies, inertia estimation techniques in power system, modeling characteristics of energy storage systems used in providing inertia support to the grid, and modeling techniques in power system operational and expansion planning is given. Findings of this study reveal that adequate system inertia in the modern grid is essential to mitigate frequency instability, thus, considering the inertia requirement of the grid in operational and expansion planning model will be key in ensuring the grid’s stability. Finally, a direction for future research has been identified from the study, while an inertial constant of between 4 and 10 s is recommended to ensure frequency stability in modern power grid.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3