Classification of COVID-19 patients from HRCT score prediction in CT images using transfer learning approach

Author:

Tembhurne JitendraORCID

Abstract

AbstractCOVID-19 had a huge impact on patients and medical systems all around the world. Computed tomography (CT) images can effectively complement the reverse transcription-polymerase chain reaction testing (RT-PCR) and offer results much faster than RT-PCR test which assists to prevent spread of COVID-19. Various deep learning models have been recently proposed for COVID-19 screening in CT scans as a tool to automate and help the diagnosis, but consisting of some benefits and limitations. Some of the reasons for this are: (i) training the data with largely unbalanced dataset and (ii) training the models with datasets having all similar CT images which leads to overfitting. In this work, we proposed a method to use multiple models to classify COVID-19 positive or negative which are trained using transfer learning techniques. In addition to classifying, if a person is COVID-19 positive or negative, we have also calculated the high-resolution computed tomography (HRCT) score or CT score to find the severity of infection with the help of image segmentation techniques, which assist in identifying the preliminary prognosis of the patient, and take necessary preventive measures.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference40 articles.

1. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv 2015. arXiv preprint arXiv:1512.03385

2. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

3. Bansal M, Kumar M, Sachdeva M, Mittal A (2021) Transfer learning for image classification using VGG19: Caltech-101 image data set. J Ambient Intell Humaniz Comput 1–12

4. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2015). Rethinking the inception architecture for computer vision. CoRR http://arxiv.org/abs/1512.00567

5. Chollet F (2016) Xception: Deep learning with depthwise separable convolutions, CoRR abs/1610.02357. URL http://arxiv.org/abs/1610.02357

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3